
NIST Net – A Linux-based Network Emulation Tool

Mark Carson, Darrin Santay
National Institute of Standards and Technology (NIST)

carson@nist.gov, santay@nist.gov

Abstract

Testing of network protocols and distributed applicationshas become increasingly complex, as
the diversity of networks and underlying technologies increase, and the adaptive behavior of applica-
tions becomes more sophisticated. In this paper, we presentNIST Net, a tool to facilitate testing and
experimentation with network code through emulation. NISTNet enables experimenters to model
and effect arbitrary performance dynamics (packet delay, jitter, bandwidth limitations, congestion,
packet loss and duplication) on live IP packets passing through a commodity Linux-based PC router.
We describe the emulation capabilities of NIST Net; examineits architecture; and discuss some of
the implementation challenges encountered in building such a tool to operate at very high network
data rates while imposing minimal processing overhead. Calibration results are provided to quantify
the fidelity and performance of NIST Net over a wide range of offered loads (up to 1 Gbps), and a
diverse set of emulated performance dynamics.

1 Introduction

Testing network protocols and applications has always beena difficult task, but current trends in Internet
software and hardware complicate matters in many ways. Networks do not simply get “faster,” but more
diverse, carrying more diverse traffic as well. Link technologies vary widely in bandwidth, latency, and
error and loss rates, and may be highly asymmetric. Overall network dynamics can fluctuate wildly, with
spot congestion and failures common. The demands that applications make of networks vary widely as
well, often taking on near-real-time characteristics thatdiffer fundamentally from the best-effort delivery
typically provided by current networks. Applications and protocols in consequence increasingly employ
adaptive mechanisms to make more intelligent use of available network resources. But these, too, present
new testing challenges: the “correct” behavior of adaptivecode cannot be defined statically or often even
in any simple deterministic fashion; and adaptive protocols at different levels or on different systems may
interact poorly with each other in ways not easily detectable while testing in isolation.

To address this growing diversity of network hardware and software, and to provide a controlled, re-
producible environment for testing network-adaptive applications, we have designedNIST Net, a simple,
fast, Linux1 kernel-based network emulator. NIST Net provides the ability to emulate common network
effects such as packet loss, duplication or delay; router congestion; and bandwidth limitations. It is
designed to offer sufficient capabilities and performance to reproduce a wide range of network behav-
iors (forwarding rates of up to 1 Gbps, satellite-like delays or longer, asymmetric characteristics), while
requiring only commodity PC hardware and operating systems. NIST Net has been used for emulation

1Certain software, equipment, instruments, or materials are identified in this paper in order to specify the experimental
procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute
of Standards and Technology, nor is it intended to imply thatthe materials or equipment identified are necessarily the best
available for the purpose. Product names mentioned in this paper are trademarks of their respective manufacturers

1

up to line rate over 100Mbps Ethernet with typical “throw-away” machines (200 MHz Pentium-class
processors and PCI-based 10/100 Ethernet cards). On current generation machines, NIST Net has been
successfully used at line rate with gigabit Ethernet cards and 622 Mbps OC-12 interfaces.

Emulation, as defined here, is a combination of two common techniques for testing network code:
simulation, which we can define as a synthetic environment for running representations of code; and
live testing, a real environment for running real code. In these terms, emulation is a “semi-synthetic”
environment for running real code. The environment is semi-synthetic in the sense that it is a real net-
work implementation (in the case of NIST Net, the Linux 2.xx kernel) with a supplementary means for
introducing synthetic delays and faults. Emulation thus offers many of the advantages of both simula-
tions (a controlled, reproducible environment, which is relatively quick and easy to assemble) and live
testing (real code in a real environment, which obviates anyquestions about the fidelity of the repre-
sentation). In a sense, emulation can then minimize the intellectual “investment” required for network
testing. NIST Net extends this metaphor by deliberately simplifying its installation and basic usage.
Thousands of people throughout the world have successfullyinstalled and used the emulator for a wide
variety of projects, even those with no prior experience with Linux. It has proven particularly useful in
academic settings for class laboratories and student research projects.

In this paper, we discuss the features and design of the emulator, emphasizing the approaches taken
to ensure simple installation and use, and to minimize processing overhead, while still providing useful
network emulation facilities. This paper is organized as follows. Section 2 describes the principal
features of the emulator. Section 3 then outlines the architecture that implements these features, with
special notes on performance-related aspects. Section 4 describes the statistical routines NIST Net uses
to generate its effects. Finally, section 5 presents the results of our calibration testing of NIST Net itself.

1.1 Related work

Network emulators have been implemented in the past for a variety of purposes on a variety of systems.
Among them we can mention Dummynet for FreeBSD [1], the Hitbox pseudo-device for SunOS [2], the
MOST Radio network emulator [3], the Ohio Network Emulator [4], the Orchestra fault injection tool
[5], Trace-based mobile network emulation [6], the emulation capabilities in the Vint/NS simulator [7],
and the X-kernel simulator/live test environment [8].

Of these, the NIST Net kernel design most closely resembles the SunOS-based Hitbox, while its
user interface was inspired in part by that of the MOST radio network emulator. However, none of these
were designed to operate at the high data rates, nor offer thesame range of capabilities, as NIST Net.
In particular, none of these emulators make use of a separatehigh-speed clock for packet scheduling,
and hence they cannot achieve the same degree of precision indelay modeling. While some of the
emulators, such as Dummynet, employ sophisticated queuingmodels for bandwidth modeling, none
of them include delay models of much statistical sophistication. NIST Net’s approach of combining a
relatively powerful set of capabilities with a very simple and easily-understood interface seems unique
in this area.

2 Emulator features

A useful way to think of NIST Net is as a “network-in-a-box” (Figure 1) – a specialized router which
emulates (statistically) the behavior of an entire networkin a single hop. NIST Net selectively applies
network effects (such as delay, loss, jitter) to traffic passing through it, based on user-supplied settings.

2

"Live" Internet

Lab network

B

A C

D

DCB A

WAN / Internet

Measured / Estimated Behavior

Emulated Behavior

Measured / Estimated Behavior

Figure 1: NIST Net as a “network in a box”

NIST Net works through a table ofemulator entries. Each entry consists of three parts: (1) a set of
specifications of which packets are matched by this entry; (2) a set of effects to be applied to matching
packets; and (3) a set of statistics kept about packets whichhave been matched by this entry. NIST Net
treats eachflow (set of matching packets) running through it separately. Thousands of these emulator
entries can be loaded at a time, each with individual networkeffects specified. This allows the emulation
of a diverse set of network conditions even in a very small labsetup (two or three boxes). Entries may
be added and changed manually, or programmatically during emulator operation, as when replaying
recorded delay/loss traces.

The matching specifications in an emulator entry cover most fields of interest in IP and higher pro-
tocol headers: source and destination IP addresses, higher-level protocol identifier (such as UDP, TCP,
ICMP, IGMP, IPIP), class/type of service field, source and destination ports (for UDP or TCP), type/code
(for ICMP or IGMP), multicast group (for IGMP), and tunneledaddresses (for IPIP). Any and all of these
fields may be wildcarded, allowing for a wide range in selectivity. The packet matching code is designed
to function at line rates even with large numbers (thousands) of emulator entries. The principal elements
of its design are considered in section 3.1.

The set of network effects NIST Net can impose includes: packet delay, both fixed and variable
(jitter); packet reordering; packet loss, both random and congestion-dependent; packet duplication; and
bandwidth limitations. We briefly describe these effects here and consider a few of particular interest in
more detail in section 4.

Ordinary (non-bandwidth-related) packet delay may be fixedor random, with the shape of the ran-
dom distribution (run-time) settable.2 By default, an empirically-derived “heavy-tail” distribution is
used. The mean (�), standard deviation (�), and linear correlation (�) of packet-to-packet delays are all
settable parameters. By appropriate setting of these parameters, packet reordering can be maximized
(large�, small or negative�), minimized (smaller�, larger�), or even eliminated (� << packet inter-
arrival time, or� near 1). Packet delays may be specified with microsecond-level precision; the actual
delays imposed are limited by the granularity of the clock used.

Ordinary (non-congestion-related) packet loss and duplication are similarly settable. Here a uniform
2In this paper,settableis used to refer to quantities or features which can be modified at run-time from user-level applica-

tions.Configurablerefers to quantities or features which are set at compile time only.

3

distribution with parameterized mean and packet-to-packet correlations is provided.
Congestion-dependent loss is emulated through a parameterized version of Derivative Random Drop

[9] (DRD). DRD drops packets with a probability that (after aminimum threshold is reached) increases
linearly with the instantaneous queue length. DRD does haveshortcomings compared to more complex
router congestion control mechanisms such as Random Early Detection [10] (RED), principally because
DRD can result in coordination of packet drops and retransmissions across multiple flows after certain
types of instantaneous traffic bursts. However, these shortcomings are not relevant for NIST Net, where
each flow is treated separately, and hence cross-flow-coordinated drops do not occur. In this situation,
DRD’s computational simplicity makes it the preferred choice.

The NIST Net implementation makes the minimum and maximum thresholds for DRD, and hence
the steepness of the drop probability ramp, settable parameters. The queue length used for DRD is
that associated with the individual emulator entry. Since traffic may be selectively aggregated through
wildcarding in emulator entries, this allows for a variety of traffic congestion scenarios to be emulated.

Support for the router part of Explicit Congestion Notification [11] (ECN) is also implemented
through DRD. In the NIST Net implementation, the congestionnotification threshold is a third DRD
parameter, which in normal use would be intermediate between the minimum and maximum drop prob-
ability thresholds. For queue lengths below the ECN threshold, ECN-enabled packets have their Con-
gestion Experienced (CE) bits marked when they would otherwise be dropped. The ability to control
separately to what extent ECN is used (in preference to earlydrop) allows for experimenting with a
variety of congestion-handling schemes.

Bandwidth limits are computed and imposed on an instantaneous basis. When a packet arrives
matching a bandwidth-limiting emulator entry, the theoretical amount of time the packet would take
to transmit at that bandwidth is calculated. Any later packets arriving which match that entry are then
delayed (at least) this time period. The first packet (the oneinducing the delays for other packets) may
then actually be sent at the beginning, middle or end of its time period, depending on the emulator
configuration. Because bandwidth limit-related delays arecumulative, it is usually advisable to impose
limits on queue lengths (through DRD parameters) as well when using bandwidth limits.

3 NIST Net emulator architecture

The emulator which implements this functionality consistsof an instrumented version of a live network
implementation, the Linux (2.0.xx – 2.4.xx) kernel. NIST Net consists of two main parts: (1) a loadable
kernel module, which hooks into the normal Linux networking and real-timeclock code, implements
the run-time emulator proper, and exports a set of control APIs; and (2) a set ofuser interfaceswhich
use the APIs to configure and control the operation of the kernel emulator (see Figure 2).

This organization of the emulator provides several advantages. Since all of the kernel functionality is
incorporated into a loadable module, the emulator may be taken up or down, patched and reloaded during
runtime, without interrupting any active connections, including those flows currently being affected by
the emulator. The separation into a module also serves to insulate the NIST Net code to a large degree
from changes to the base kernel.

The separation between emulation proper and the user interface allows multiple processes to control
the emulator simultaneously. This is useful when controlling the emulator both interactively, and with
parameters generated from previously-taken traces. New emulator settings may be loaded continuously,
even to control currently-active flows; as discussed further below (section 3.1), kernel data structures
are handled in such a way as to minimize the locking required.Two user interfaces are provided with
the code: a simple command-line interface, suitable for scripting, and an interactive graphical interface

4

Kernel Module

Stat setup

(FP code)

Socket code

Application code

IP level code

Real time

Net device code

user interface

User level

Network

Other user
user interface

Kernel level

Linux Kernel

Socket interface

Stat gen

(int code)

dd−style interface

interface

clock code

Packet
matching

Packet processing
DelayDupDrop

Packet intercept

Fast timer Scheduling

External handler

dd interface

External hooks

Figure 2: NIST Net Architecture

Figure 3: NIST Net graphical user interface

(shown in Figure 3), which allows controlling and monitoring a large number of emulator entries simul-
taneously. Once a desired suite of emulator settings is created, it may be dumped for reloading in later
runs, which simplifies repeated testing under identical conditions.

The NIST Net kernel module makes use of two hooks into the Linux kernel proper. In order to
inspect all incoming packets for potential handling, thepacket interceptcode seizes control of the IP
packet type handler. All IP packets received by network devices are then passed directly to the NIST
Net module. Afterpacket matchingdetermines (based on the table of emulator entries) whetherand
how packet processingshould affect the packet, NIST Net then (possibly after delay) passes the packet
on to the Linux IP level code. Thefast timertakes control of the system real time clock and uses it as
a timer source forschedulingdelayed packets. In the process, it reprograms the clock to interrupt at a
sufficiently high rate for fine-grained packet delays.

NIST Net allowsexternal hooksinto its module as well. Externalstatistics generation codemay
supply values for NIST Net’s generation of network effects.(An example of such code is presented in
section 4.3.) Alternatively,external handlersmay work in concert with NIST Net or take over packet
processing entirely. A variety of external handlers have been developed for such areas as flow monitor-

5

ing, wireless network bit error emulation, and voice over IPtesting.
In the sections which follow, we describe some of the performance-critical elements in the imple-

mentation of NIST Net.

3.1 NIST Net indexing structures

Emulator entries are stored in a table, which must be accessible both at task time (so user-level code may
enter new settings) and at interrupt time (so that the packetmatching code may look up entries when
new packets arrive). Table lookup needs to be relatively fast to keep up with packet arrival rates, and yet
needs to provide a flexible wildcard matching scheme. To meetthese requirements, we use a two-level
hash table to hold the emulator settings. A two-level hash table is a hash table with chaining, where the
chains themselves areredistributedinto secondary hash tables (using a secondary hash function) if they
become too long (Figure 4).

Figure 4: Redistribution in a two-level hash table

Several considerations motivated this two-level approach, as opposed to a single larger hash table:
(1) Most users only use a few emulator entries at a time, for which the default hash table size (256) should
be more than adequate. (2) If a larger table is needed, it is less disruptive for the reconstruction to happen
piecemeal (by default, only to chains which have reached 11 entries in length) than to reallocate an entire
new larger table. (3) If many entries are clustering around asingle hash table slot, it may be an indication
that the hash function is not separating entries well. In such a case, using a second hash function to
separate the clusters is a better strategy than trying finer divisions with the same hash function. NIST
Net uses a simple congruential hash function for the first level table, and a more complex function for
the second [12], which, while slower, should presumably be less subject to inadvertent clustering. In
experiments, this two-level hash structure has resulted inminimal overhead (usually<< 1�sec per
lookup) even with several thousand emulator entries.

Using what is effectively an elaboration of a simple hash table makes lock handling during updates
relatively trivial. To avoid the need for read locks, all updates are handled in a “safe” fashion (assuming
atomic pointer writes), as suggested by Pugh [13]. Additionof new entries follows the usual scheme,
but preserving consistency for readers during deletions isslightly more complex, requiring a two-step
approach. The first step removes the item to be deleted from further “upstream” access as usual. The
second step then leaves it pointing “downstream” but one step farther up, so that any readers which
happen to be dwelling on the deleted node will be able to find the rest of the list, even in the face of
multiple deletions (Figure 5). Deleted nodes are only recycled when a subsequent node allocation is
requested, at which point any readers have long since exited.

Figure 5: Read-stable node deletion

Write locking is handled at the (top) hash table slot level only; that is, each of the top-level hash
table slots has an individual lock. This is a compromise position between a single overall table lock and

6

individual node level locks. Since in the usual Linux kernelenvironment, the number of simultaneous
writers is limited to the number of processors, this is more than adequate.

NIST Net allows selective matching of packets by most commonheader fields. Any and all fields
may be wildcarded. Wildcarding is implemented through a (configurable) array of bitmasks, arranged
from most to least specific. All emulator entries, whether wildcard or specific, are stored in the same
table. Matching an incoming packet then (potentially) involves multiple passes through the table: the
values in the packet header are masked by each set of bitmasksin turn, then the table is searched for
the masked values. For an example, an incoming ping packet from 192.168.120.104 to 129.6.51.105
will match the following potential emulator entries (in order):

Source address Destination address Protocol Port

192.168.120.104 129.6.51.105 icmp echo-request
192.168.120.104 129.6.51.105 icmp –
– 129.6.51.105 icmp echo–request
192.168.120.104 – icmp echo-request
192.168.120.104 129.6.51.105 – –
– 129.6.51.105 icmp –
192.168.120.104 – icmp –
– – icmp –
– 129.6.51.105 – –
192.168.120.104 – – –
– 129.6.51.– – –
– 129.6.–.– – –
– 129.–.–.– – –
– – – –

(Port is of course a misnomer for ICMP; for these entries, NIST Net uses the port field to store the type
and code.)

NIST Net also (optionally) allows matching by the IP class/type-of-service (ToS) bits (which include
the DiffServ code point). For brevity, the additional possibilities this creates have been omitted from the
table above.

To decrease the overhead involved in making multiple searches through the table, we keep a small
cache of previous lookups, by default of size two. If a new lookup request matches a cached request
(that is, the request has the same packet header values as oneof the cached ones), the cached result is
returned. The idea in using only a two-entry cache is that in most cases, only a single stream is being
actively affected by NIST Net at any one time. A two-element cache will then cover both directions of
this stream. The cache is emptied any time table indices are modified, in case the modification might
introduce a more specific match.

3.2 NIST Net timer handling

NIST Net uses a timer to replay delayed packets at the appropriate later point. To do this with sufficient
fidelity requires a fine-grained (sub-millisecond level) timer source. For the initial versions of NIST
Net on i386-style machines, the system i8253/4 timer chip was used as a source of interrupts (the timer
“ticks”), reprogrammed to interrupt at a much higher rate than the fairly coarse Linux default of 100 Hz.
Unfortunately, such reprogramming requires kernel sourcemodifications, which over time proved to be
a maintenance and installation issue. For this reason, current versions of NIST Net use the MC146818

7

real-time clock (RTC) as the timer interrupt source. Linux normally only makes fairly trivial use of this
device, so it can be reused for NIST Net without fear of any substantial interference. NIST Net runs the
RTC at its highest possible interrupt rate, 8192Hz, for a tick granularity of approximately 122�sec.

In scheduling packets, NIST Net uses a variant of the Linux timer code, reimplemented to run on
the RTC. This code maintains the list of timers to be run by a “just-in-time” radix sort. There are five
levels of the sort. As a simple ad hoc optimization, the lowest level uses radix 256 (28), while the upper
levels use radix 64 (26), together covering the entire 32-bit range (32 = 8 + 4*6). The basic idea is to
avoid extra sort steps for short-lived timers, while keeping the upper level bins small.

At each level, the bins are maintained in a circular list; thepointer to the current list position advances
as the clock ticks. Thus, at the lowest level, there are 256 nodes in the list, for timers which will go off
at 0, 1, ..., 255 ticks in the future. At the next level, there are 64 nodes, for timers which will go off at
256-511, 512-767, ..., 16128-16383 ticks in the future, andso forth. The initial step in the radix sort is
done when a timer is first added. Then, every time a lower-level list makes a complete circuit, the next
batch of timers from the next level up is cascaded downward, which will cause them to undergo the next
sorting step.

In the Linux timer implementation, each bin of timers is maintained as a stack in LIFO (“last in,
first out”) fashion; with each cascade, then, the timers are all restacked. The result is that the sort is not
stable; that is, timer events scheduled for the same clock tick do not necessarily occur in the same order
that they were scheduled. In Linux usage, where timer eventsare presumably unrelated, this difference
is immaterial, but in NIST Net’s usage, this had the effect ofrandomly reordering packets “clumped”
into a single timer slot. While packet reordering does occurin real life, it does not normally occur to this
extent, so this proved unintentionally harsh for some network software being tested. Hence, in the NIST
Net implementation, the individual timer bins were modifiedto be FIFO (“first in, first out”), making
the sort stable and eliminating the undesired reordering.

Unlike the Linux timer code, all the tasks whose timers have expired are gathered up into a separate,
detached list before running them. This increases the preliminary processing somewhat, but has a posi-
tive overall effect on system stability and overhead, sinceinterrupts need only be disabled once to gather
the entire list and reenabled once to run all the timers, rather than disabled and reenabled repeatedly
to run each one. When the delayed packets are rerun, they are reintroduced to the network software
interrupt (as opposed to the RTC interrupt the timer functions run on), so that they will be processed
in the correct context. The packets are marked so that NIST Net will know not to delay them again.
Overall, this setup has proved stable even at extraordinarily high interrupt rates, up to a (i8253/4-based)
1.68�sec tick granularity and gigabit Ethernet connections.

4 NIST Net statistical generation

NIST Net uses a set of statistical routines to generate the parameters for the impairments it applies to
network traffic. The routines used need not be realistic models of the actual internal mechanisms of
networks and routers, but should be computationally simple, and yet adaptable enough to imitate a wide
range of network behaviors. In this context,computationally simplemeans two things: that generation
of values needed for delays and other effects must be fast enough to keep up with packet receive rates
(up to hundreds of thousands per second); and that any kernel-based calculations must be done using
only integral or fixed-point arithmetic. (Linux does not support using the floating point unit in kernel
mode.) Calculations done outside the kernel may be arbitrarily complex, but kernel memory constraints
limit how much data (such as distribution table values) can be stored in the kernel at any one time.
Adaptablehere means that the routines should be parameterized in terms of quantities (such as mean,

8

standard deviation, correlation) that are easily understood and easily derived from sources such as traffic
traces, so that NIST Net can be made to imitate the behavior demonstrated by those traces. This section
describes the techniques used to generate packet delay values; analogous techniques are used for other
network effects. We present first the methods used in the released version of NIST Net, outline some
of the limitations of these methods, and then describe the improved methods used in a new version of
NIST Net currently under development.

4.1 Simple packet delays

The typical distribution of packet delays through the Internet features a “heavy tail” – a skewing toward
the right (longer delay times) when compared to the symmetric normal distribution. As an example, the
solid line in Figure 6 depicts the distribution of roundtripping times for a three-hour connection between
machines in Gaithersburg, MD (ran.antd.nist.gov) and Boulder, CO (time.nist.gov).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 160 170 180 190 200 210 220 230 240

N
um

be
r

of
 p

ac
ke

ts

Time (msec)

Measured ping delays
NIST Net generated delays

Figure 6: Real vs. NIST Net-synthesized delay distributions

Informally, this behavior makes sense – there are far more ways for things to go “wrong” for a
packet (worse than average) than there are for things to go “right” (better than average). Various network
simulation models have been devised to produce this delay pattern, and it can even be reasonably well
approximated by closed-form analytical expressions. However, simulations cannot generally be run
quickly enough to generate individual packet delays in realtime, where packets can be arriving at the
rate of thousands per second; and, while several closed-form approximations are provided as sample
delay generation methods in the distributed NIST Net code, these do not really have the flexibility to
match a very wide variety of delay patterns.

Instead, as our standard method, we use a much simpler approximation – a random lookup in a
previously generated table. The approach used is based on a tabular approximation of the inverse of the
cumulative distribution function (cdf), essentially as described in the simulation literature [14] [15].

In creating the tabular approximation, we use an evenly-spaced table of moderate size (normally
4096) which covers the range from -4.0 to +4.0 standard deviations. (In actuality, to avoid all use
of floating point arithmetic, the table values are internally stored as 16-bit integers, and all internal
calculations are carried out in fixed point.) In filling out the inverse table, we use linear interpolation.
While in general it is more accurate to use Stieltjes partitioning [16], where the width of table entries is
chosen based on the rate of variation of the cdf, in our case the cdf has fairly smooth behavior except at

9

the extremities of the range, so that the simpler evenly-space table with linear interpolation suffices (as
is shown in Figure 6).

The inverse table is normalized to produce values with mean of 0 and standard deviation 1. These
values are then transformed via scaling and translation to yield the desired mean and standard deviation.

4.2 Simple correlation and� and � “correction”

The approach described above produces a distribution of thecorrect “shape,” but without further mod-
ification, it misses many other features of real delay distributions. The most important of these is that
successive packet delay values tend to be highly correlated. As an example, in the three-hour connec-
tion test mentioned above, the linear correlation (�) between successive packet delays over a three hour
period was 0.478, fairly high, but within a typical range.

The released version of NIST Net takes a straightforward approach to reproducing this correlation
– if the successively generated uncorrelated values arex1; x2; x3; :::, then NIST Net usesy1; y2; y3; :::,
where yi = xi � (1� �) + � � yi�1

Given that thexi are uncorrelated, it follows immediately that the linear correlation between succes-
sive values of theyi is indeed�. Unfortunately, this simple-minded method of forcing correlation will
tend to dampen variance (assuming positive correlation). As a simple expedient, NIST Net “corrects”
for this by using a larger� initially; that is, rather than use� + � � x, it uses� +
(�) � � � x, where
(�) is a suitable “correction” factor. This correction factor (which, as indicated, is dependent on�) is
determined empiricallya priori.

This method also causes some minor drift in the generated� values, which NIST Net “corrects” for
in a similar fashion. Thus, the values actually generated for a given�; �; � arezi = yi � (1� �) + � � yi�1

where yi = d(�; �) � �+
(�) � � � xi
andxi is the value returned from the distribution table. Since thed() and
() factors are fixed, once�; �; � are given, they are all calculated in advance (during emulator configuration).

4.3 Improved generation methods

The method described above is computationally trivial and adequate for most purposes, but clearly can
be improved upon. Its most obvious drawback is that it only considers correlation between successive
delays and not longer-term correlation. Longer-term correlations as generated by NIST Net drop off
exponentially at a much faster rate than real delays (see Figure 7). At a user level, this results in a
perceptibly greater degree of “roughness” in the generateddistribution – a greater degree of variability
over randomly-chosen segments of the generated delays thanis seen on average in real delay data.

In the latest version of NIST Net, we take advantage of the ability to graft on external statistics
generation code, to introduce a more sophisticated method which better handles longer term correla-
tions. The external method itself uses a two-level approach. The first level is based on Riedi’s hybrid
multifractal wavelet model (MWM) [17]. Originally devisedto model bandwidth utilization at routers,
MWM also works well at modeling end-to-end network delay patterns. As seen in Figure 7, MWM

10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 5 10 15 20 25 30 35 40

Li
ne

ar
 c

or
re

la
tio

n

Time difference of packets (sec)

Ping traffic
NIST Net generated traffic

Hybrid MWM 25/30 generated traffic

Figure 7: Long-term correlation of actual vs. generated delay values

tracks longer-term correlations quite well. The MWM model is run at user level, periodically sending
new delay parameters to the kernel-level integral generator. In this configuration, the MWM model is
used only to generate medium-term delay patterns (a range ofseconds to minutes), which imposes only
a very modest speed of generation requirement it can easily handle.

However, straightforward use of MWM does have limitations in modeling delays over longer time
periods (hours or more). MWM works best when the distribution it is modeling is relatively stable over
the entire modeled time period, but can give anomalous results when this is fails to be the case. As an
example, Figure 8, shows (on the left) the trace of the Gaithersburg-Boulder delay data used throughout
here. These data were collected for a period of several hours, beginning around 4:30pm on a weekday
afternoon and continuing into the evening. There is thus a steady dropoff in the average delay in the
first part of the data, as people leave work and network utilization decreases. There is also an increase
in the variance of the data in the latter half, as automated network backups and other bulk transfers are
scheduled. When fed directly to MWM for analysis and generation, these effects are not well-handled,
as can be seen in the graph on the right in Figure 8. Here, the increased variance is spread evenly
throughout the generated trace, and the changes in average delay show up at a few scattered points.

To overcome these limitations and still allow overall delaymodeling to be done in an automated
fashion, we add a front-end long-term analyzer as a second level on top of the MWM analyzer. The front

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000 14000

La
te

nc
y

(m
s)

NIST Gaithersburg->Boulder

nistnet.datasource

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000

La
te

nc
y

(m
s)

MWM synthesized version

"nistnet_datasource_syn"

Figure 8: Trace of actual vs. MWM-generated delay values

11

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500 3000 3500 4000

La
te

nc
y

(m
s)

NIST Gaithersburg->Boulder

"nistnet.datasource"
"breaks"

line
Break

Reference window 0 Forward window

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500 3000 3500 4000

La
te

nc
y

(m
s)

NIST Gaithersburg->Boulder

"nistnet.datasource"
"breaks"

line
Break

line
Break

Forward windowReference window 0

Figure 9: Break operation

end divides up long-term delay trace data into medium-term pieces which show relatively consistent
statistical behavior (in terms of means and standard deviations). The front end works by advancing a
window through the delay data being analyzed; when the statistical characteristics of the data in this
window differ sufficiently from that seen in a reference window earlier in the data, the front end then
marks a break at that point, and advances its reference window (see Figure 9).

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000 14000

La
te

nc
y

(m
s)

NIST Gaithersburg->Boulder

"nistnet.datasource"
"breaks"

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000

La
te

nc
y

(m
s)

Break-synthesized MWM model

"syn.nistnet.datasource"

Figure 10: Overall break pattern and resulting MWM-regenerated delay values

The front end then submits each piece separately to the MWM model for analysis and generation,
with the generated pieces then (optionally) reassembled (see Figure 10).

While better-matching than the original MWM model, the revised model still shows some weak-
nesses, especially in its portrayal of the magnitude of extreme values. To better handle these, we are
currently working to employ other NIST work on extreme valuemodeling [18]. As part of our valida-
tion effort for this modeling approach, we are running this two-level model on the network trace data
generated by the Active Measurement Project at NLANR [19]. One result of this validation effort will
be a catalog of network behaviors, stored as sets of MWM generators, which can then be employed as
desired in NIST Net emulations.

12

5 Calibration

To calibrate the fidelity and performance limits of NIST Net,we conducted a series of tests using a
SmartBits 6000B Performance Analysis System [20]. This wasused to drive loads of up to 1 Gbit/sec
through a NIST Net system and then measure the resulting latency (Figure 11). The NIST Net platform
under test had a 1666 MHz Athlon processor, 1 GB RAM, and dual NetGear 622T 64 bit/66 MHz PCI-
based copper gigabit Ethernet interfaces. The operating system used was Red Hat 7.3, with Linux kernel
version 2.4.18. The range of tests covered offered loads from 100 kbps to 1 Gbps, with packet sizes
from 76 to 1518 bytes, NIST Net delay settings were from 0 to 10seconds, with a variety of standard
deviations and correlation constants applied. The resultsindicate that NIST Net runs and performs
predictably up to gigabit line rates, even with packet ratesin excess of 1 million packets/sec. Complete
results are available at the NIST Net web site [21]; we will here consider a representative sample.

NIST Net

Linux
Router Smart

Bits
Smart
Flow

10.0.0.2

11.0.0.211.0.0.1

10.0.0.1

Gigabit Ethernet

Full duplex

Figure 11: NIST Net testbed configuration

The table below shows the measured statistical characteristics of a 1 Mbit/sec stream of 76-byte
packets (approximately 1644 packets/sec), being sent through the Linux router without the NIST Net
module loaded (Control); with the NIST Net module loaded andmatching packets, but imposing 0 msec
delay; and with NIST Net imposing delays of 1, 10, 100 and 1000msec:

Delay (msec) Mean latency (�sec) Std dev (�sec)
Control 15.65 3.89

0 17.90 6.23
1 1064.35 35.68

10 10097.78 35.52
100 100063.40 35.80

1000 1000081.54 35.42

When NIST Net is merely matching packets but imposing no delays, the effects are predictably small: a
constant additional overhead (over and above the native Linux overhead) of approximately 2.2�sec, and
an increase in the standard deviation of the latency of a similar amount. Closer examination of packet
traces shows the increased variance in the latency is due mainly to the addition of the 8192 Hz RTC
interrupt; periodically, this will interrupt packet processing, adding a small but measurable amount to
the overall latency. The amount of this inherent overhead will of course vary with the performance of the
system running NIST Net; earlier investigations had shown that for a 200 MHz Pentium-class system
with 10/100 Ethernet, the comparable overhead was on the order of 5-6�sec.

Imposing constant delays with NIST Net has two noticeable (additional) effects: a constant addi-
tional overhead of approximately 50-80�sec, and an increase in the standard deviation to approximately
35.5�sec. Both are explained by the NIST Net tick granularity (approximately 122�sec). When NIST
Net delays a packet, it rounds up the delay time to the next multiple of this value. Assuming for sim-

13

plicity’s sake that packet arrivals are uncorrelated with respect to the NIST Net clock, the effect then
is statistically equivalent to adding a uniformly distributed random variable with range [0:122�sec] to
the packet latency. Such a random variable has mean approximately 61�sec and standard deviation ap-
proximately 35.5�sec. Overall, then, when NIST Net is imposing delays, the actual observed latency is
approximatelyintended delay+O(18)�se
+U(122)�se
 whereU(122) is a uniform random variable
with range[0 : 122℄.

At data rates above 100 Mbit/sec, other effects intrude. Themost significant of these is “clumping”:
when the packet arrival rate exceeds the NIST Net clock interrupt rate, several packets can end up
being “clumped” into the same timer slot. If packet clumps are large enough, then, when these delayed
packets are rescheduled, there can be spot demands for output bandwidth exceeding the line rate of the
output interface. In this case, packets can begin queuing atthe interface level as well. As an example.
total average measured latency increases by approximately20-40% (over control levels) when constant
delays are imposed at 500 Mbit/sec. NIST Net still functionsreliably at these levels, but quantitative
experiments need to take such lower-level queuing into account.

Although secondary in size to timer/interface-based clumping, NIST Net’s own internal mechanisms
begin to have a measurable effect at these very high rates. Here are the results of preliminary perfor-
mance profiling of the most notable of these, using the Linux system clock as the time source. All of
these tests involved data rates of roughly 100 to 200 Mbit/sec and packet rates of roughly 20,000/sec,
with delays sufficient to queue several thousand packets at any one time (from 100 to 1000 msec).

Packet lookup in the emulator entry table (described in section 3.1) generally requires only trivial
amounts of time, even with thousands of emulator entries. With two or fewer active streams, lookup
overhead is unmeasurably small (less than 1�sec), due to the caching mentioned above (section 3.1).
When the number of active streams increases, lookup overhead increases somewhat, reaching a level of
3-4�sec with 12 active streams and 1500 emulator entries.

Timer queue management (described in section 3.2) has more significant effects. Simple insertion or
deletion of timer events (packets to be delayed) takes unmeasurably small time, even amid thousands of
already-queued packets. The significant time expenditure is at each periodic radix sort step, when all the
timers at the next higher level are cascaded downward in the radix sort tree. Interestingly, the overhead
is highest (on the order of 30-50�sec per cascade) when delays are constant, and drops considerably
(to around 8-15�sec) when large delay variances are introduced. This is presumably because larger
variances scatter the timer entries more widely through theradix tree, so that individual cascades tend
to be smaller.

Because timer expiration times are predetermined on an absolute basis, timer queue management
overhead does not translate directly into per-packet overhead times, but clearly incurring the higher
overhead levels every timer tick (122�sec) can have a deleterious effect on overall system performance.
In such a high-stress environment, NIST Net should only be used on otherwise unloaded systems to
achieve consistent results.

6 Conclusion

In this paper, we have described the design and implementation of the NIST Net emulator, in particular
the techniques employed to allow line-rate operation of emulation functions while still providing useful
models of real end-to-end network performance dynamics. Wepresented some of the initial results of
our ongoing efforts to improve the fidelity of the NIST Net statistical models, and to calibrate emulator
functions.

Our experiences and the feedback from NIST Net’s users indicate the value of the emulation ap-

14

proach for testing emerging network technology. Since its initial release, NIST Net has been obtained
by nearly twenty thousand people around the world, and has been used for a wide variety of testing
purposes, including for voice over IP, mobile network emulation, adaptive video transmissions, satellite
and underseas radio link emulation, and interactive network gaming.

Because of its relative ease of installation and use, NIST Net has been widely used in academic and
research laboratories (see [22], [23], [24], [25] for a few examples). In particular, the ability to specify
complex network behaviors through a few easily-understoodstatistical parameters has made NIST Net
a useful tool in a classroom setting, being used for a wide variety of student projects.

The NIST Net code, documentation, and calibration results are all in the public domain and are
available through its web site [21].

7 Acknowledgments

The work described here was supported in part by the Defense Advanced Research Project Agency’s
Intelligent Collaboration and Visualization (ICV) and Network Measurement and Simulation (NMS)
projects. We would also like to thank our colleagues at NIST,in particular Doug Montgomery, John Lu
and Kevin Mills, for their valuable advice throughout the course of this project and during the preparation
of this manuscript.

References

[1] Luigi Rizzo. Dummynet: a simple approach to the evaluation of network protocols.ACM Computer
Communication Review, 27, January 1997.

[2] Jong Suk Ahn, Peter B. Danzig, Zhen Liu, and Limin Yan. Evaluation of TCP Vegas: Emulation and
experiment. InSIGCOMM ’95, 1995.http://excalibur.usc.edu/research/vegas/doc/vegas.html.

[3] Nigel Davies, Gordon Blair, Keith Cheverst, and Adrian Friday. A network emulator to support the
development of adaptive applications. InProceedings of the 2nd Usenix Symposium on Mobile and
Location Independent Computing, 1995.
http://www.comp.lancs.ac.uk/computing/research/mpg/most/emulator.html.

[4] Mark Allman, Adam Caldwell, and Shawn Ostermann. ONE: The Ohio network emulator. Technical
Report TR-19972, Ohio University, 1997.http://irg.cs.ohiou.edu/one/tr19972.ps.

[5] Scott Dawson, Farnam Jahanian, and Todd Mitton. ORCHESTRA: A fault injection environment for
distributed systems. Technical Report CSE-TR-318-96, University of Michigan, 1996.
ftp://rtcl.eecs.umich.edu/outgoing/sdawson/CSE-TR-318-96.ps.gz.

[6] B. Noble, M. Satyanarayanan, G. Nguyen, and R. Katz. Trace-based mobile network emulation. In
SIGCOMM ’97, 1997.http://www.cs.cmu.edu/afs/cs/project/coda/Web/docdir/sigcomm97.pdf.

[7] Kevin Fall. Network emulation in the Vint/NS simulator.In ISCC99, 1999.
http://www.cs.berkeley.edu/ kfall/papers/iscc99.ps.

[8] L. Brakmo and L. Peterson. Experiences with network simulation. InSIGMETRICS ’96, 1996.
http://www.cs.arizona.edu/xkernel/www/people/brakmo.html.

[9] Mark Gaynor. Proactive packet dropping methods for TCP gateways.
http://www.eecs.harvard.edu/ gaynor/final.ps, November 1996.

[10] Sally Floyd and Van Jacobson. Random early detection gateways for congestion avoidance.IEEE/ACM
Transactions on Networking, 1(4):397–413, August 1993.

15

[11] K.K Ramakrishnan and Sally Floyd. A proposal to add explicit congestion notification (ECN) to IP.RFC
2481, 1999.http://www.ietf.org/rfc/rfc2481.txt.

[12] Robert J. Jenkins, Jr. Hash functions for hash table lookup.
http://burtleburtle.net/bob/hash/evahash.html, 1997.

[13] William Pugh. Concurrent maintenance of skip lists. Technical Report UMIACS-TR-90-80,CS-TR-2222.1,
University of Maryland, 1990.
ftp://ftp.cs.umd.edu/pub/papers/papers/ncstrl.umcp/CS-TR-2222/CS-TR-2222.ps.Z.

[14] H.C. Chen and Y. Asau. On generating random variates from an empirical distribution.AIEE Transactions,
6:163–166, 1974.

[15] Paul Bratley, Bennett L. Fox, and Linus E. Schrage.A Guide To Simulation, page 149. Springer Verlag,
1987.

[16] J.H. Ahrens and K.D. Kohrt. Computer methods for efficient sampling from largely arbitrary statistical
distributions.Computing, 26:19–31, 1981.

[17] R. H. Riedi, M. S. Crouse, V. J. Ribeiro, and R. G. Baraniuk. A multifractal wavelet model with application
to network traffic. InIEEE Transactions on Information Theory (Special Issue on Multiscale Signal
Analysis and Modeling), volume 45, pages 992–1018, April 1999.
http://www.dsp.rice.edu/publications/pub/riedibmw.ps.gz.

[18] Z.Q. John Lu and Nell Sedransk. Generalized pareto mixture models for network traffic with applications
to performance evaluation, October 2002. manuscript in preparation.

[19] Todd Hansen, Jose Otero, Tony McGregor, and Hans-Werner Braun. Active measurement data analysis
techniques, March 2000.http://watt.nlanr.net/.

[20] Spirent Communications.http://smartbits.spirentcom.com/.

[21] NIST Net web site.http://www.antd.nist.gov/nistnet.

[22] S. Das, M. Gerla, S. S. Lee, G. Pau, K. Yamada, and H.Yu. Practical qos network system with fault
tolerance.http://www.cs.ucla.edu/ nrl/hpi/papers/2002-spects-0.pdf.

[23] Phil Kearns.http://www.cs.wm.edu/ kearns/001lab.d/labuse.html.

[24] Bhaskaran Raman, Yan Chen, Weidong Cui, and Randy Katz.Wide area network emulation on the
millennium, June 2001.
http://www.cs.berkeley.edu/ bhaskar/iceberg/pres/jun2001-retreat/wane-mill.ppt.

[25] Tascnets.com software.http://www.tascnets.com/newtascnets/Facilities/Documents/Main.html.

16

