NIST Net — A Linux-based Network Emulation Tool

Mark Carson, Darrin Santay
National Institute of Standards and Technology (NIST)
carson@nist.gov, santay@nist.gov

Abstract

Testing of network protocols and distributed applicatibas become increasingly complex, as
the diversity of networks and underlying technologieséase, and the adaptive behavior of applica-
tions becomes more sophisticated. In this paper, we pré8&it Neta tool to facilitate testing and
experimentation with network code through emulation. NNt enables experimenters to model
and effect arbitrary performance dynamics (packet deitgr,j bandwidth limitations, congestion,
packet loss and duplication) on live IP packets passingitjiit@ commodity Linux-based PC router.
We describe the emulation capabilities of NIST Net; exanitsmarchitecture; and discuss some of
the implementation challenges encountered in buildindy sutool to operate at very high network
data rates while imposing minimal processing overheadbaion results are provided to quantify
the fidelity and performance of NIST Net over a wide range &érefd loads (up to 1 Gbps), and a
diverse set of emulated performance dynamics.

1 Introduction

Testing network protocols and applications has always be#fficult task, but current trends in Internet
software and hardware complicate matters in many ways. dt&sado not simply get “faster,” but more
diverse, carrying more diverse traffic as well. Link teclogdés vary widely in bandwidth, latency, and
error and loss rates, and may be highly asymmetric. Ovezbllark dynamics can fluctuate wildly, with
spot congestion and failures common. The demands thatafiplis make of networks vary widely as
well, often taking on near-real-time characteristics thfier fundamentally from the best-effort delivery
typically provided by current networks. Applications arrdtpcols in consequence increasingly employ
adaptive mechanisms to make more intelligent use of avaiteiwork resources. But these, too, present
new testing challenges: the “correct” behavior of adaptivde cannot be defined statically or often even
in any simple deterministic fashion; and adaptive proteeddifferent levels or on different systems may
interact poorly with each other in ways not easily dete&atthile testing in isolation.

To address this growing diversity of network hardware arfth&se, and to provide a controlled, re-
producible environment for testing network-adaptive agggions, we have design®dST Neta simple,
fast, Linux kernel-based network emulator. NIST Net provides the tgtiiti emulate common network
effects such as packet loss, duplication or delay; routagestion; and bandwidth limitations. It is
designed to offer sufficient capabilities and performamcesproduce a wide range of network behav-
iors (forwarding rates of up to 1 Gbps, satellite-like dslay longer, asymmetric characteristics), while
requiring only commaodity PC hardware and operating systédST Net has been used for emulation

Certain software, equipment, instruments, or materiasigentified in this paper in order to specify the experimenta
procedure adequately. Such identification is not intenddthply recommendation or endorsement by the Nationaltlristi
of Standards and Technology, nor is it intended to imply thatmaterials or equipment identified are necessarily tisé be
available for the purpose. Product names mentioned in tpsipare trademarks of their respective manufacturers

up to line rate over 100Mbps Ethernet with typical “throwagt machines (200 MHz Pentium-class
processors and PCl-based 10/100 Ethernet cards). On tgaeeration machines, NIST Net has been
successfully used at line rate with gigabit Ethernet cands622 Mbps OC-12 interfaces.

Emulation as defined here, is a combination of two common techniquee$ting network code:
simulation, which we can define as a synthetic environmentuoning representations of code; and
live testing, a real environment for running real code. lesthterms, emulation is a “semi-synthetic”
environment for running real code. The environment is sgynthetic in the sense that it is a real net-
work implementation (in the case of NIST Net, the Linux 2.>etthel) with a supplementary means for
introducing synthetic delays and faults. Emulation thdersfmany of the advantages of both simula-
tions (a controlled, reproducible environment, which istieely quick and easy to assemble) and live
testing (real code in a real environment, which obviates gmstions about the fidelity of the repre-
sentation). In a sense, emulation can then minimize théenteal “investment” required for network
testing. NIST Net extends this metaphor by deliberatelyp$ifging its installation and basic usage.
Thousands of people throughout the world have successhgtglled and used the emulator for a wide
variety of projects, even those with no prior experiencénwinux. It has proven particularly useful in
academic settings for class laboratories and studentrodspeojects.

In this paper, we discuss the features and design of the &mutanphasizing the approaches taken
to ensure simple installation and use, and to minimize @sing overhead, while still providing useful
network emulation facilities. This paper is organized d#oves. Section 2 describes the principal
features of the emulator. Section 3 then outlines the archite that implements these features, with
special notes on performance-related aspects. Sectiosciilges the statistical routines NIST Net uses
to generate its effects. Finally, section 5 presents thdteesf our calibration testing of NIST Net itself.

1.1 Related work

Network emulators have been implemented in the past foriatyanf purposes on a variety of systems.
Among them we can mention Dummynet for FreeBSD [1], the Hitbgeudo-device for SunOS [2], the
MOST Radio network emulator [3], the Ohio Network Emulaté}, the Orchestra fault injection tool
[5], Trace-based mobile network emulation [6], the emolatapabilities in the Vint/NS simulator [7],
and the X-kernel simulator/live test environment [8].

Of these, the NIST Net kernel design most closely resemhbiesstinOS-based Hitbox, while its
user interface was inspired in part by that of the MOST radiovork emulator. However, none of these
were designed to operate at the high data rates, nor offesaiime range of capabilities, as NIST Net.
In particular, none of these emulators make use of a sephaigtiespeed clock for packet scheduling,
and hence they cannot achieve the same degree of precisalay modeling. While some of the
emulators, such as Dummynet, employ sophisticated queuirdels for bandwidth modeling, none
of them include delay models of much statistical sophitttca NIST Net's approach of combining a
relatively powerful set of capabilities with a very simpledeeasily-understood interface seems unique
in this area.

2 Emulator features

A useful way to think of NIST Net is as a “network-in-a-box”iglare 1) — a specialized router which
emulates (statistically) the behavior of an entire netwaork single hop. NIST Net selectively applies
network effects (such as delay, loss, jitter) to traffic pagshrough it, based on user-supplied settings.

4 Measured / Estimated Behavior

"Live" Internet .

/
/ \

/
/
/

// !
| |
! |
\ [‘ !

Measured / Estimated Behavio ,,——"/— /

Figure 1: NIST Net as a “network in a box”

NIST Net works through a table @mulator entries Each entry consists of three parts: (1) a set of
specifications of which packets are matched by this entjya et of effects to be applied to matching
packets; and (3) a set of statistics kept about packets wigieh been matched by this entry. NIST Net
treats eachilow (set of matching packets) running through it separatelyoubands of these emulator
entries can be loaded at a time, each with individual netwtfdcts specified. This allows the emulation
of a diverse set of network conditions even in a very smallsiafup (two or three boxes). Entries may
be added and changed manually, or programmatically dummglaor operation, as when replaying
recorded delay/loss traces.

The matching specifications in an emulator entry cover mektdiof interest in IP and higher pro-
tocol headers: source and destination IP addresses, Hayetiprotocol identifier (such as UDP, TCP,
ICMP, IGMP, IPIP), class/type of service field, source anstidation ports (for UDP or TCP), type/code
(for ICMP or IGMP), multicast group (for IGMP), and tunneladdresses (for IPIP). Any and all of these
fields may be wildcarded, allowing for a wide range in seldtsti The packet matching code is designed
to function at line rates even with large numbers (thouspoidsmulator entries. The principal elements
of its design are considered in section 3.1.

The set of network effects NIST Net can impose includes: gadklay, both fixed and variable
(jitter); packet reordering; packet loss, both random amthestion-dependent; packet duplication; and
bandwidth limitations. We briefly describe these effecteland consider a few of particular interest in
more detail in section 4.

Ordinary (non-bandwidth-related) packet delay may be foiecandom, with the shape of the ran-
dom distribution (run-time) settabfe.By default, an empirically-derived “heavy-tail” distribban is
used. The meanu), standard deviatiors{), and linear correlationp) of packet-to-packet delays are all
settable parameters. By appropriate setting of these aeasn packet reordering can be maximized
(large o, small or negativep), minimized (smallew, largerp), or even eliminateds << packet inter-
arrival time, orp near 1). Packet delays may be specified with microsecoradfgecision; the actual
delays imposed are limited by the granularity of the clookdus

Ordinary (non-congestion-related) packet loss and daftin are similarly settable. Here a uniform

2In this papersettableis used to refer to quantities or features which can be madifieun-time from user-level applica-
tions. Configurablerefers to quantities or features which are set at compile tinly.

distribution with parameterized mean and packet-to-packeelations is provided.

Congestion-dependent loss is emulated through a parareeterersion of Derivative Random Drop
[9] (DRD). DRD drops packets with a probability that (aftem&imum threshold is reached) increases
linearly with the instantaneous queue length. DRD does Bageicomings compared to more complex
router congestion control mechanisms such as Random Eatcion [10] (RED), principally because
DRD can result in coordination of packet drops and retrassioms across multiple flows after certain
types of instantaneous traffic bursts. However, these @mihgs are not relevant for NIST Net, where
each flow is treated separately, and hence cross-flow-awiedi drops do not occur. In this situation,
DRD’s computational simplicity makes it the preferred dwoi

The NIST Net implementation makes the minimum and maximumstiolds for DRD, and hence
the steepness of the drop probability ramp, settable paessneThe queue length used for DRD is
that associated with the individual emulator entry. Simedfit may be selectively aggregated through
wildcarding in emulator entries, this allows for a variefytraffic congestion scenarios to be emulated.

Support for the router part of Explicit Congestion Notificat [11] (ECN) is also implemented
through DRD. In the NIST Net implementation, the congestiotification threshold is a third DRD
parameter, which in normal use would be intermediate bt minimum and maximum drop prob-
ability thresholds. For queue lengths below the ECN thrigsiH&CN-enabled packets have their Con-
gestion Experienced (CE) bits marked when they would otlsenlve dropped. The ability to control
separately to what extent ECN is used (in preference to eldyg) allows for experimenting with a
variety of congestion-handling schemes.

Bandwidth limits are computed and imposed on an instantenéasis. When a packet arrives
matching a bandwidth-limiting emulator entry, the theimadtamount of time the packet would take
to transmit at that bandwidth is calculated. Any later p#&leeriving which match that entry are then
delayed (at least) this time period. The first packet (theindacing the delays for other packets) may
then actually be sent at the beginning, middle or end of itetperiod, depending on the emulator
configuration. Because bandwidth limit-related delayscaraulative, it is usually advisable to impose
limits on queue lengths (through DRD parameters) as welhwlsing bandwidth limits.

3 NIST Net emulator architecture

The emulator which implements this functionality consiftan instrumented version of a live network
implementation, the Linux (2.0.xx — 2.4.xx) kernel. NISTtNensists of two main parts: (1) a loadable
kernel modulewhich hooks into the normal Linux networking and real-ticleck code, implements
the run-time emulator proper, and exports a set of contrdsAfhd (2) a set ofiser interfacesvhich
use the APIs to configure and control the operation of thedtemmulator (see Figure 2).

This organization of the emulator provides several adgg#aSince all of the kernel functionality is
incorporated into a loadable module, the emulator may Entak or down, patched and reloaded during
runtime, without interrupting any active connectionsliiiing those flows currently being affected by
the emulator. The separation into a module also serves wtatesthe NIST Net code to a large degree
from changes to the base kernel.

The separation between emulation proper and the useraogedlows multiple processes to control
the emulator simultaneously. This is useful when contrgliihe emulator both interactively, and with
parameters generated from previously-taken traces. Nawagon settings may be loaded continuously,
even to control currently-active flows; as discussed furtiedow (section 3.1), kernel data structures
are handled in such a way as to minimize the locking requiiieab user interfaces are provided with
the code: a simple command-line interface, suitable fapsog, and an interactive graphical interface

Application code

Stat setup

. (FP code) user interface
User level Socket interface [Li A
Kernel level ddf-style[interface
Linux Kernel | Y Stat gen
Socket code (int code) "l
A
\
V —@T\t—erface
IP level code
e Packet Packet processing
U matching | Drop | Dup | Delay
Real time 2= _---w Packet intercept
clock code S
Net device code “Fast timerf-|Scheduling -+
A ‘ Kernel Module
Y Network

Figure 2: NIST Net Architecture

[®] NIST Network Emulation Tool v. 2.0.11

Kick

Source Dest E Delay (ms) Delsigma(ms) Bandwidth Drop % Dup % DRDmin DRDmax
[00.00 | [ovMRP MCAST.NET | 1] 0.000 || 0000 i 0][o000 || 0oo00] 0 i 0 |
[00.00 | [riP2-RouTERS McasTNET| || 0.000 || o000] 0 || oo000 || 00000 || 0] 0 |
|dee.antd.nist.gov |Jo0.00 [200.000 [15.000 i 0 J[199997 || 00000 || 0 i 0 |
|192.168.130.106 [Jo0.00 J|}] o0.000 || o000] 0 || oo000 || 00000 || 0] 0 |
[00.00 | [120.6.51.055 | 1] 0.000 || 0000 i 0][o000 || 0oo00] 0 i 0 |
dee-227.antd nist gov [Jo0.00] 30000	10.000		2000		o.0000		©.0000 i 10] 50
i JIH [0.000		0000 i 0][o000		0oo00] 0 i 0				
] ‘ﬁll 0.000		o000] 0		oo000		00000		0] 0
JES] D Ty [[R

I Emulator is On Update | Readcurrent | Dumpsettings| AddRow | sting | Quit

Figure 3: NIST Net graphical user interface

(shown in Figure 3), which allows controlling and monitaria large number of emulator entries simul-
taneously. Once a desired suite of emulator settings isextes may be dumped for reloading in later
runs, which simplifies repeated testing under identicatitams.

The NIST Net kernel module makes use of two hooks into the Xikernel proper. In order to
inspect all incoming packets for potential handling, gaeket interceptode seizes control of the IP
packet type handler. All IP packets received by network ceviare then passed directly to the NIST
Net module. Afterpacket matchingletermines (based on the table of emulator entries) whaifnbr
how packet processinghould affect the packet, NIST Net then (possibly after yatmsses the packet
on to the Linux IP level code. Thiast timertakes control of the system real time clock and uses it as
a timer source foschedulingdelayed packets. In the process, it reprograms the cloaktéorupt at a
sufficiently high rate for fine-grained packet delays.

NIST Net allowsexternal hooksnto its module as well. Externaitatistics generation codemay
supply values for NIST Net’s generation of network effe¢sn example of such code is presented in
section 4.3.) Alternativelyexternal handlersnay work in concert with NIST Net or take over packet
processing entirely. A variety of external handlers havenb#eveloped for such areas as flow monitor-

ing, wireless network bit error emulation, and voice ovetdsting.
In the sections which follow, we describe some of the per&oroe-critical elements in the imple-
mentation of NIST Net.

3.1 NIST Net indexing structures

Emulator entries are stored in a table, which must be aditedsith at task time (so user-level code may
enter new settings) and at interrupt time (so that the patietthing code may look up entries when
new packets arrive). Table lookup needs to be relativelytalseep up with packet arrival rates, and yet
needs to provide a flexible wildcard matching scheme. To ithese requirements, we use a two-level
hash table to hold the emulator settings. A two-level habletis a hash table with chaining, where the
chains themselves aredistributedinto secondary hash tables (using a secondary hash fupdttory
become too long (Figure 4).

Figure 4: Redistribution in a two-level hash table

Several considerations motivated this two-level apprpastopposed to a single larger hash table:
(1) Most users only use a few emulator entries at a time, fackuine default hash table size (256) should
be more than adequate. (2) If a larger table is needed, gsglisruptive for the reconstruction to happen
piecemeal (by default, only to chains which have reachedfries in length) than to reallocate an entire
new larger table. (3) If many entries are clustering arousithgle hash table slot, it may be an indication
that the hash function is not separating entries well. Imsacase, using a second hash function to
separate the clusters is a better strategy than trying fimesiahs with the same hash function. NIST
Net uses a simple congruential hash function for the firstlleable, and a more complex function for
the second [12], which, while slower, should presumablydss lsubject to inadvertent clustering. In
experiments, this two-level hash structure has resultethiimmal overhead (usually.< 1usec per
lookup) even with several thousand emulator entries.

Using what is effectively an elaboration of a simple hashetabakes lock handling during updates
relatively trivial. To avoid the need for read locks, all apels are handled in a “safe” fashion (assuming
atomic pointer writes), as suggested by Pugh [13]. Addibbnew entries follows the usual scheme,
but preserving consistency for readers during deletiorstightly more complex, requiring a two-step
approach. The first step removes the item to be deleted frottmefu“upstream” access as usual. The
second step then leaves it pointing “downstream” but one feteher up, so that any readers which
happen to be dwelling on the deleted node will be able to fiedréist of the list, even in the face of
multiple deletions (Figure 5). Deleted nodes are only rietyevhen a subsequent node allocation is
requested, at which point any readers have long since exited

11 [Ch A ChP -

Figure 5: Read-stable node deletion

Write locking is handled at the (top) hash table slot levdypthat is, each of the top-level hash
table slots has an individual lock. This is a compromisetimsbetween a single overall table lock and

6

individual node level locks. Since in the usual Linux keraaVironment, the number of simultaneous
writers is limited to the number of processors, this is mbentadequate.

NIST Net allows selective matching of packets by most comimesder fields. Any and all fields
may be wildcarded. Wildcarding is implemented through afigurable) array of bitmasks, arranged
from most to least specific. All emulator entries, whetheldeard or specific, are stored in the same
table. Matching an incoming packet then (potentially) imes multiple passes through the table: the
values in the packet header are masked by each set of bitrimagk®, then the table is searched for
the masked values. For an example, an incoming ping packetl®2.168.120.104t0 129.6.51.105
will match the following potential emulator entries (in erjt

Source address Destination address Protocol Port
192.168.120.104 129.6.51.105 icmp echo-request
192.168.120.104 129.6.51.105 icmp -

- 129.6.51.105 icmp echo—-request
192.168.120.104 - icmp echo-request
192.168.120.104 129.6.51.105 - -

- 129.6.51.105 icmp -
192.168.120.104 - icmp -

- - icmp -

- 129.6.51.105 - -
192.168.120.104 - - -

- 129.6.51.— - -

- 129.6.—— - -

- 129.——— - -

(Port is of course a misnomer for ICMP; for these entries, NIST Neisuthe port field to store the type
and code.)

NIST Net also (optionally) allows matching by the IP clagsé&-of-service (ToS) bits (which include
the DiffServ code point). For brevity, the additional paiigties this creates have been omitted from the
table above.

To decrease the overhead involved in making multiple seartrough the table, we keep a small
cache of previous lookups, by default of size two. If a newkignrequest matches a cached request
(that is, the request has the same packet header values a$ theecached ones), the cached result is
returned. The idea in using only a two-entry cache is that@stneases, only a single stream is being
actively affected by NIST Net at any one time. A two-elememthe will then cover both directions of
this stream. The cache is emptied any time table indices adhfied, in case the modification might
introduce a more specific match.

3.2 NIST Net timer handling

NIST Net uses a timer to replay delayed packets at the agptepater point. To do this with sufficient
fidelity requires a fine-grained (sub-millisecond levethér source. For the initial versions of NIST
Net on i386-style machines, the system i8253/4 timer chip wged as a source of interrupts (the timer
“ticks”™), reprogrammed to interrupt at a much higher ratatthe fairly coarse Linux default of 100 Hz.
Unfortunately, such reprogramming requires kernel soarodifications, which over time proved to be
a maintenance and installation issue. For this reasoremuversions of NIST Net use the MC146818

real-time clock (RTC) as the timer interrupt source. Linaxmally only makes fairly trivial use of this
device, so it can be reused for NIST Net without fear of anystautdial interference. NIST Net runs the
RTC at its highest possible interrupt rate, 8192Hz, for la gianularity of approximately 12@2sec.

In scheduling packets, NIST Net uses a variant of the Linoneticode, reimplemented to run on
the RTC. This code maintains the list of timers to be run byust‘jn-time” radix sort. There are five
levels of the sort. As a simple ad hoc optimization, the lai@sel uses radix 25&¢), while the upper
levels use radix 642(), together covering the entire 32-bit range (32 = 8 + 4*6)e Dasic idea is to
avoid extra sort steps for short-lived timers, while keggime upper level bins small.

At each level, the bins are maintained in a circular list;ghiter to the current list position advances
as the clock ticks. Thus, at the lowest level, there are 25@&sin the list, for timers which will go off
ato0, 1, ..., 255 ticks in the future. At the next level, there 84 nodes, for timers which will go off at
256-511, 512-767, ..., 16128-16383 ticks in the future, smébrth. The initial step in the radix sort is
done when a timer is first added. Then, every time a lower-lastenakes a complete circuit, the next
batch of timers from the next level up is cascaded downwahit;lwwill cause them to undergo the next
sorting step.

In the Linux timer implementation, each bin of timers is mained as a stack in LIFO (“last in,
first out”) fashion; with each cascade, then, the timers hrestacked. The result is that the sort is not
stable; that is, timer events scheduled for the same clokldth not necessarily occur in the same order
that they were scheduled. In Linux usage, where timer exaetpresumably unrelated, this difference
is immaterial, but in NIST Net's usage, this had the effectasfdomly reordering packets “clumped”
into a single timer slot. While packet reordering does odacueal life, it does not normally occur to this
extent, so this proved unintentionally harsh for some netwoftware being tested. Hence, in the NIST
Net implementation, the individual timer bins were modiftedbe FIFO (“first in, first out”), making
the sort stable and eliminating the undesired reordering.

Unlike the Linux timer code, all the tasks whose timers haygred are gathered up into a separate,
detached list before running them. This increases thenpirediry processing somewhat, but has a posi-
tive overall effect on system stability and overhead, sintarrupts need only be disabled once to gather
the entire list and reenabled once to run all the timerseratiian disabled and reenabled repeatedly
to run each one. When the delayed packets are rerun, thegiateoduced to the network software
interrupt (as opposed to the RTC interrupt the timer fumgioun on), so that they will be processed
in the correct context. The packets are marked so that NISTwileknow not to delay them again.
Overall, this setup has proved stable even at extraortiirtagh interrupt rates, up to a (i8253/4-based)
1.68usec tick granularity and gigabit Ethernet connections.

4 NIST Net statistical generation

NIST Net uses a set of statistical routines to generate thenpeters for the impairments it applies to
network traffic. The routines used need not be realistic nsodethe actual internal mechanisms of
networks and routers, but should be computationally singpid yet adaptable enough to imitate a wide
range of network behaviors. In this contexgmputationally simpleneans two things: that generation
of values needed for delays and other effects must be fasiggno keep up with packet receive rates
(up to hundreds of thousands per second); and that any Kesset calculations must be done using
only integral or fixed-point arithmetic. (Linux does not popt using the floating point unit in kernel
mode.) Calculations done outside the kernel may be arjt@mplex, but kernel memory constraints
limit how much data (such as distribution table values) carstored in the kernel at any one time.
Adaptablehere means that the routines should be parameterized is @rgquantities (such as mean,

standard deviation, correlation) that are easily undedstmd easily derived from sources such as traffic
traces, so that NIST Net can be made to imitate the behaviopdstrated by those traces. This section
describes the technigues used to generate packet delasyalhalogous techniques are used for other
network effects. We present first the methods used in thaseteversion of NIST Net, outline some
of the limitations of these methods, and then describe thdaed methods used in a new version of
NIST Net currently under development.

4.1 Simple packet delays

The typical distribution of packet delays through the In&trfeatures a “heavy tail” — a skewing toward

the right (longer delay times) when compared to the symmatimal distribution. As an example, the

solid line in Figure 6 depicts the distribution of roundtgimg times for a three-hour connection between
machines in Gaithersburg, MBan.antd.nist.gov) and Boulder, COt{me.nist.gov).

800

T T
Measured ping delays
NIST Net generated delays -------

700
600

500

Number of packets
B
(=]
o

300

200

100

1 1 1 1 1 1 = =
160 170 180 190 200 210 220 230 240
Time (msec)

Figure 6: Real vs. NIST Net-synthesized delay distribigion

Informally, this behavior makes sense — there are far mongsvi@r things to go “wrong” for a
packet (worse than average) than there are for things tagjut™i(better than average). Various network
simulation models have been devised to produce this deldgrpaand it can even be reasonably well
approximated by closed-form analytical expressions. Hewesimulations cannot generally be run
quickly enough to generate individual packet delays in tiea¢, where packets can be arriving at the
rate of thousands per second; and, while several closed-fmproximations are provided as sample
delay generation methods in the distributed NIST Net cdaesd do not really have the flexibility to
match a very wide variety of delay patterns.

Instead, as our standard method, we use a much simpler apattion — a random lookup in a
previously generated table. The approach used is basedatwlart approximation of the inverse of the
cumulative distribution function (cdf), essentially asdebed in the simulation literature [14] [15].

In creating the tabular approximation, we use an evenlgegpdable of moderate size (normally
4096) which covers the range from -4.0 to +4.0 standard tdewg (In actuality, to avoid all use
of floating point arithmetic, the table values are intemallored as 16-bit integers, and all internal
calculations are carried out in fixed point.) In filling outtmverse table, we use linear interpolation.
While in general it is more accurate to use Stieltjes partitig [16], where the width of table entries is
chosen based on the rate of variation of the cdf, in our casedhhas fairly smooth behavior except at

the extremities of the range, so that the simpler evenlgepable with linear interpolation suffices (as
is shown in Figure 6).

The inverse table is normalized to produce values with mé#&namd standard deviation 1. These
values are then transformed via scaling and translatioretd the desired mean and standard deviation.

4.2 Simple correlation andy and o “correction”

The approach described above produces a distribution afdfvect “shape,” but without further mod-
ification, it misses many other features of real delay distibns. The most important of these is that
successive packet delay values tend to be highly correl&edn example, in the three-hour connec-
tion test mentioned above, the linear correlatiphbetween successive packet delays over a three hour
period was 0.478, fairly high, but within a typical range.

The released version of NIST Net takes a straightforwardagmb to reproducing this correlation
— if the successively generated uncorrelated values:are,, s, ..., then NIST Net uses, yo, y3, ...,
where

yi =z x (1 —p) +p*yi

Given that ther; are uncorrelated, it follows immediately that the linearretation between succes-
sive values of the; is indeedp. Unfortunately, this simple-minded method of forcing etetion will
tend to dampen variance (assuming positive correlatiors)a Aimple expedient, NIST Net “corrects”
for this by using a larges initially; that is, rather than usg + o * z, it usesu + ¢(p) * o * z, where
¢(p) is a suitable “correction” factor. This correction facterhich, as indicated, is dependent @nis
determined empirically priori.

This method also causes some minor drift in the generateadues, which NIST Net “corrects” for
in a similar fashion. Thus, the values actually generatea fgiveny, o, p are

zi=yi*x (1 —p)+p*ryia

where
yi = d(o,p) * p+c(p) * 0 x z;

andz; is the value returned from the distribution table. Sincedfieandc() factors are fixed, once
1, o, p are given, they are all calculated in advance (during eroutainfiguration).

4.3 Improved generation methods

The method described above is computationally trivial ashebj@ate for most purposes, but clearly can
be improved upon. Its most obvious drawback is that it onlysaters correlation between successive
delays and not longer-term correlation. Longer-term datians as generated by NIST Net drop off
exponentially at a much faster rate than real delays (seard-if). At a user level, this results in a
perceptibly greater degree of “roughness” in the generditgtdbution — a greater degree of variability
over randomly-chosen segments of the generated delayssteaan on average in real delay data.

In the latest version of NIST Net, we take advantage of thétyalido graft on external statistics
generation code, to introduce a more sophisticated methachvbetter handles longer term correla-
tions. The external method itself uses a two-level approddte first level is based on Riedi’s hybrid
multifractal wavelet model (MWM) [17]. Originally deviseéd model bandwidth utilization at routers,
MWM also works well at modeling end-to-end network delaytg@ats. As seen in Figure 7, MWM

10

Ping traﬁic
NIST Net generated traffic -------
Hybrid MWM 25/30 generated traffic - -

045 -

0.4 V'\ — S T S T
035 [} 1
03 1]

025 F 1

Linear correlation

02} |
0.15 | q
01]

0.05 - - - A

I I I I I I I
5 10 15 20 25 30 35 40
Time difference of packets (sec)

Figure 7: Long-term correlation of actual vs. generatedyehlues

tracks longer-term correlations quite well. The MWM modgetun at user level, periodically sending
new delay parameters to the kernel-level integral gener#icthis configuration, the MWM model is
used only to generate medium-term delay patterns (a rangecohds to minutes), which imposes only
a very modest speed of generation requirement it can eamilglé.

However, straightforward use of MWM does have limitationsnodeling delays over longer time
periods (hours or more). MWM works best when the distribuiids modeling is relatively stable over
the entire modeled time period, but can give anomaloustesestiien this is fails to be the case. As an
example, Figure 8, shows (on the left) the trace of the Gatheg-Boulder delay data used throughout
here. These data were collected for a period of several hbaginning around 4:30pm on a weekday
afternoon and continuing into the evening. There is thusadst dropoff in the average delay in the
first part of the data, as people leave work and network atibn decreases. There is also an increase
in the variance of the data in the latter half, as automat&dork backups and other bulk transfers are
scheduled. When fed directly to MWM for analysis and genenathese effects are not well-handled,
as can be seen in the graph on the right in Figure 8. Here, titeased variance is spread evenly
throughout the generated trace, and the changes in aveztyestiow up at a few scattered points.

To overcome these limitations and still allow overall detapdeling to be done in an automated
fashion, we add a front-end long-term analyzer as a seceetida top of the MWM analyzer. The front

400

400

T T T T
istnet.datasource "nistnet_datasource_syn"

350 [— 350 -

300 r| B 300

Latency (ms)
Latency (ms)

150

.
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000
NIST Gaithersburg->Boulder MWM synthesized version

Figure 8: Trace of actual vs. MWM-generated delay values

11

400 400

T T T T
"nistnet.datasource” "nistnet.datasource”
oreaks “breaks"
350 g 350 -
Break Break Break
300 | line 4 300 | line line
@ — @
£ £
> >
3 3
2 g
2 2
kit ki
250 | g 250
200 200 M
d M M‘,
Reference window 0 Forward widow Reference wintiow 0 orwartWind
150 150
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000

NIST Gaithersburg->Boulder NIST Gaithersburg->Boulder

Figure 9: Break operation

end divides up long-term delay trace data into medium-teiengs which show relatively consistent
statistical behavior (in terms of means and standard dem&t The front end works by advancing a
window through the delay data being analyzed; when thesttati characteristics of the data in this
window differ sufficiently from that seen in a reference womdearlier in the data, the front end then
marks a break at that point, and advances its reference wifsk®e Figure 9).

400 T T T T 400

T T T
“nistnet.datasource" “syn.nistnet.datasource"

350 H 350 |

300 H 300 |

Latency (ms)
Latency (ms)

250 H

T
|
)
)
i
|
)
|
)
i
|
)
|
|
|
|
|
|
|
|
|

200

}
‘ i

L L L L 150 L L L L
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000

150

NIST Gaithersburg->Boulder Break-synthesized MWM model

Figure 10: Overall break pattern and resulting MWM-regatezt delay values

The front end then submits each piece separately to the MWBlelfor analysis and generation,
with the generated pieces then (optionally) reassembksiKggure 10).

While better-matching than the original MWM model, the smd model still shows some weak-
nesses, especially in its portrayal of the magnitude ofeexér values. To better handle these, we are
currently working to employ other NIST work on extreme vataedeling [18]. As part of our valida-
tion effort for this modeling approach, we are running thi®devel model on the network trace data
generated by the Active Measurement Project at NLANR [19e @sult of this validation effort will
be a catalog of network behaviors, stored as sets of MWM géors;, which can then be employed as
desired in NIST Net emulations.

12

5 Calibration

To calibrate the fidelity and performance limits of NIST Net conducted a series of tests using a
SmartBits 6000B Performance Analysis System [20]. This usesl to drive loads of up to 1 Gbit/sec
through a NIST Net system and then measure the resultingcha&igure 11). The NIST Net platform
under test had a 1666 MHz Athlon processor, 1 GB RAM, and deaGHar 622T 64 bit/66 MHz PCI-
based copper gigabit Ethernet interfaces. The operatstgrsyused was Red Hat 7.3, with Linux kernel
version 2.4.18. The range of tests covered offered loads &00 kbps to 1 Gbps, with packet sizes
from 76 to 1518 bytes, NIST Net delay settings were from 0 t@d€bonds, with a variety of standard
deviations and correlation constants applied. The resuficate that NIST Net runs and performs
predictably up to gigabit line rates, even with packet ratesxcess of 1 million packets/sec. Complete
results are available at the NIST Net web site [21]; we wilsheonsider a representative sample.

|- - - == Gigabit Ethernet —=& - -

|
|
V [w001 10002 | |
1
Linux
Router Srr_]art | —p-| Smart
Bits Flow
NIST Net I\
] 11001 11.0.0.2

- - ——% Fullduplex — -~ ~- -~

Figure 11: NIST Net testbed configuration

The table below shows the measured statistical chardatsrisf a 1 Mbit/sec stream of 76-byte
packets (approximately 1644 packets/sec), being sentighrthe Linux router without the NIST Net
module loaded (Control); with the NIST Net module loaded aradching packets, but imposing 0 msec
delay; and with NIST Net imposing delays of 1, 10, 100 and 1®3@ec:

Delay (msec) Mean latencygec) Std devi(sec)
Control 15.65 3.89

0 17.90 6.23

1 1064.35 35.68

10 10097.78 35.52

100 100063.40 35.80

1000 1000081.54 35.42

When NIST Net is merely matching packets but imposing noydelde effects are predictably small: a
constant additional overhead (over and above the natiuexlomerhead) of approximately 2.&ec, and
an increase in the standard deviation of the latency of dasimmount. Closer examination of packet
traces shows the increased variance in the latency is dudymaithe addition of the 8192 Hz RTC
interrupt; periodically, this will interrupt packet pra&asng, adding a small but measurable amount to
the overall latency. The amount of this inherent overhedidoivtourse vary with the performance of the
system running NIST Net; earlier investigations had shdwai for a 200 MHz Pentium-class system
with 10/100 Ethernet, the comparable overhead was on ttex ofb-6.sec.

Imposing constant delays with NIST Net has two noticeabtili(feonal) effects: a constant addi-
tional overhead of approximately 50-@8ec, and an increase in the standard deviation to appradynat
35.5usec. Both are explained by the NIST Net tick granularity agmately 122usec). When NIST
Net delays a packet, it rounds up the delay time to the nextipreilof this value. Assuming for sim-

13

plicity’s sake that packet arrivals are uncorrelated wébpect to the NIST Net clock, the effect then
is statistically equivalent to adding a uniformly distried random variable with range [0:123ec] to
the packet latency. Such a random variable has mean apm@tetinG1,sec and standard deviation ap-
proximately 35.5usec. Overall, then, when NIST Net is imposing delays, theaabserved latency is
approximatelyintended delay + O(18)usec+ U (122) usec whereU (122) is a uniform random variable
with range[0 : 122].

At data rates above 100 Mbit/sec, other effects intrude.mbst significant of these is “clumping”:
when the packet arrival rate exceeds the NIST Net clock nmperrate, several packets can end up
being “clumped” into the same timer slot. If packet clumps large enough, then, when these delayed
packets are rescheduled, there can be spot demands fot batmlwidth exceeding the line rate of the
output interface. In this case, packets can begin queuittgeahterface level as well. As an example.
total average measured latency increases by approxin2e#)% (over control levels) when constant
delays are imposed at 500 Mbit/sec. NIST Net still functiogigably at these levels, but quantitative
experiments need to take such lower-level queuing intowatco

Although secondary in size to timer/interface-based clagyiNIST Net's own internal mechanisms
begin to have a measurable effect at these very high rate® afe the results of preliminary perfor-
mance profiling of the most notable of these, using the Lirgstesn clock as the time source. All of
these tests involved data rates of roughly 100 to 200 Mités®l packet rates of roughly 20,000/sec,
with delays sufficient to queue several thousand packetsyatrze time (from 100 to 1000 msec).

Packet lookup in the emulator entry table (described ini@e@&.1) generally requires only trivial
amounts of time, even with thousands of emulator entriesh Wo or fewer active streams, lookup
overhead is unmeasurably small (less thags#&c), due to the caching mentioned above (section 3.1).
When the number of active streams increases, lookup oweétrhegeases somewhat, reaching a level of
3-4 usec with 12 active streams and 1500 emulator entries.

Timer queue management (described in section 3.2) has nigoiécant effects. Simple insertion or
deletion of timer events (packets to be delayed) takes usumably small time, even amid thousands of
already-queued packets. The significant time expendisuaeéach periodic radix sort step, when all the
timers at the next higher level are cascaded downward ireitii sort tree. Interestingly, the overhead
is highest (on the order of 30-5@sec per cascade) when delays are constant, and drops cabbide
(to around 8-15usec) when large delay variances are introduced. This isupraisly because larger
variances scatter the timer entries more widely throughrdldix tree, so that individual cascades tend
to be smaller.

Because timer expiration times are predetermined on ariwbdoasis, timer queue management
overhead does not translate directly into per-packet @agtttimes, but clearly incurring the higher
overhead levels every timer tick (122ec) can have a deleterious effect on overall system pesitren
In such a high-stress environment, NIST Net should only el um otherwise unloaded systems to
achieve consistent results.

6 Conclusion

In this paper, we have described the design and implementatithe NIST Net emulator, in particular
the techniques employed to allow line-rate operation oflatimn functions while still providing useful
models of real end-to-end network performance dynamics.pisented some of the initial results of
our ongoing efforts to improve the fidelity of the NIST Nett&#tcal models, and to calibrate emulator
functions.

Our experiences and the feedback from NIST Net's usersatalithe value of the emulation ap-

14

proach for testing emerging network technology. Sincenitsal release, NIST Net has been obtained
by nearly twenty thousand people around the world, and has heed for a wide variety of testing
purposes, including for voice over IP, mobile network ertiatg adaptive video transmissions, satellite
and underseas radio link emulation, and interactive nétgaming.

Because of its relative ease of installation and use, NIS{Thise been widely used in academic and
research laboratories (see [22], [23], [24], [25] for a fexmmples). In particular, the ability to specify
complex network behaviors through a few easily-understiatistical parameters has made NIST Net
a useful tool in a classroom setting, being used for a wideetyaof student projects.

The NIST Net code, documentation, and calibration resultsadl in the public domain and are
available through its web site [21].

7 Acknowledgments

The work described here was supported in part by the Defedsarsed Research Project Agency’s
Intelligent Collaboration and Visualization (ICV) and Metrk Measurement and Simulation (NMS)
projects. We would also like to thank our colleagues at NiSPparticular Doug Montgomery, John Lu

and Kevin Mills, for their valuable advice throughout theicse of this project and during the preparation
of this manuscript.

References

[1] Luigi Rizzo. Dummynet: a simple approach to the evalmatf network protocolsACM Computer
Communication Reviev7, January 1997.

[2] Jong Suk Ahn, Peter B. Danzig, Zhen Liu, and Limin Yan. ledion of TCP Vegas: Emulation and
experiment. I'SIGCOMM '95 1995. http://excalibur.usc.edu/research/vegas/doc/vegas.html.

[3] Nigel Davies, Gordon Blair, Keith Cheverst, and Adriamday. A network emulator to support the
development of adaptive applications.Rroceedings of the 2nd Usenix Symposium on Mobile and
Location Independent ComputintP95.
http://www.comp.lancs.ac.uk/computing/research/mpg/most/emulator.html.

[4] Mark Allman, Adam Caldwell, and Shawn Ostermann. ONEeTdhio network emulator. Technical
Report TR-19972, Ohio University, 199Hittp://irg.cs.ohiou.edu/one/tr19972.ps.

[5] Scott Dawson, Farnam Jahanian, and Todd Mitton. ORCH&ESTA fault injection environment for
distributed systems. Technical Report CSE-TR-318-96yé&hsity of Michigan, 1996.
ftp://rtcl.eecs.umich.edu/outgoing/sdawson/CSE-TR-318-96.ps.gz.

[6] B. Noble, M. Satyanarayanan, G. Nguyen, and R. Katz. 84a@sed mobile network emulation. In
SIGCOMM 97 1997. http://www.cs.cmu.edu/afs/cs/project/coda/Web/docdir/sigcomm97.pdf.

[7] Kevin Fall. Network emulation in the Vint/NS simulatdn ISCC99 1999.
http://www.cs.berkeley.edu/ kfall/papers/iscc99.ps.

[8] L.Brakmo and L. Peterson. Experiences with network sation. INnSIGMETRICS '961996.
http://www.cs.arizona.edu/xkernel/www/people/brakmo.html.

[9] Mark Gaynor. Proactive packet dropping methods for T@Regays.
http://www.eecs.harvard.edu/ gaynor/final.ps, November 1996.

[10] Sally Floyd and Van Jacobson. Random early detectidevgeys for congestion avoidand&EEE/ACM
Transactions on Networkind.(4):397-413, August 1993.

15

[11] K.K Ramakrishnan and Sally Floyd. A proposal to add eétptongestion notification (ECN) to IlRFC
2481, 1999. http://www.ietf.org/rfc/rfc2481.txt.

[12] Robert J. Jenkins, Jr. Hash functions for hash tablkupo
http://burtleburtle.net/bob/hash/evahash.html, 1997.

[13] William Pugh. Concurrent maintenance of skip listscfeical Report UMIACS-TR-90-80,CS-TR-2222.1,
University of Maryland, 1990.
ftp://ftp.cs.umd.edu/pub/papers/papers/ncstrl.umcp/CS-TR-2222/CS-TR-2222.ps.Z.

[14] H.C. Chen and Y. Asau. On generating random variates fitn empirical distributionAIEE Transactions
6:163-166, 1974.

[15] Paul Bratley, Bennett L. Fox, and Linus E. Schragesuide To Simulatiorpage 149. Springer Verlag,
1987.

[16] J.H. Ahrens and K.D. Kohrt. Computer methods for effitisampling from largely arbitrary statistical
distributions.Computing 26:19-31, 1981.

[17] R. H. Riedi, M. S. Crouse, V. J. Ribeiro, and R. G. Bar&ni@ multifractal wavelet model with application
to network traffic. INEEE Transactions on Information Theory (Special Issue aiitistale Signal
Analysis and Modeling)olume 45, pages 992-1018, April 1999.
http://www.dsp.rice.edu/publications/pub/riedibmw.ps.gz.

[18] Z.Q. John Lu and Nell Sedransk. Generalized paretourgxinodels for network traffic with applications
to performance evaluation, October 2002. manuscript ipgmegion.

[19] Todd Hansen, Jose Otero, Tony McGregor, and Hans-Wa&mrain. Active measurement data analysis
techniques, March 200uttp://watt.nlanr.net/.

[20] Spirent Communicationsttp://smartbits.spirentcom.com/.
[21] NIST Net web site http://www.antd.nist.gov/nistnet.

[22] S. Das, M. Gerla, S. S. Lee, G. Pau, K. Yamada, and H.Yactial qos network system with fault
tolerance http://www.cs.ucla.edu/ nrl/hpi/papers/2002-spects-0.pdf.

[23] Phil Kearns.http://www.cs.wm.edu/ kearns/001lab.d/labuse.html.

[24] Bhaskaran Raman, Yan Chen, Weidong Cui, and Randy Kide area network emulation on the
millennium, June 2001.
http://iww.cs.berkeley.edu/ bhaskar/iceberg/pres/jun2001-retreat/wane-mill.ppt.

[25] Tascnets.com softwaréttp://www.tascnets.com/newtascnets/Facilities/Documents/Main.html.

16

